Affiliation:
1. Department of Urban Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
Abstract
Two pilot-scale powdered activated carbon–microfiltration (PAC–MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60–80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(III) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.
Subject
Water Science and Technology,Environmental Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献