Chemical denitrification for nitrogen removal from landfill leachate

Author:

Nikolić A.1,Hultman B.1

Affiliation:

1. Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), Brinellvägen 32, S-100 44 Stockholm, Sweden, (E-mail: bgh@kth.se)

Abstract

A new system that removes nitrogen from landfill leachate and other waste waters with similar properties has been proposed with nitritation (i.e. oxidation of ammonium to nitrite) of half of the influent ammonium followed by chemical denitrification with a reaction between equal amounts of ammonium and nitrite to form nitrogen gas. Chemical denitrification occurs at high concentrations and the reactions were studied in combination with a concentration step. Studied concentration methods were freezing/thawing and evaporation/drying. Chemical denitrification is well-known in inorganic chemistry and has been observed in natural systems. Studies in laboratory were focused on chemical denitrification and showed that nearly complete removal of soluble nitrogen can be obtained in evaporation/drying of water solutions or leachate with equal amounts of ammonium and nitrite. Freezing/drying was less efficient with a removal of about 50–60% at high initial concentrations. Chemical denitrification is much influenced by concentration, pH-value, temperature and some compounds in leachate have an inhibiting effect on the reaction. Factors as safety (ammonium nitrite as a salt is explosive above 60°C) and possible side-reactions as formation of ammonia and nitrogen oxides must be carefully evaluated before use in full-scale. Conductivity is a suitable parameter to follow-up the chemical denitrification process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3