Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR)

Author:

Lesjean B.1,Gnirss R.2,Buisson H.3,Keller S.2,Tazi-Pain A.3,Luck F.1

Affiliation:

1. KompetenzZentrum Wasser Berlin, Cicerostr. 24, 10709 Berlin, Germany

2. Berliner Wasserbetriebe, Cicerostr. 24, 10709 Berlin, Germany

3. Anjou Recherche, Chemin de la Digue BP76, 78603 Maisons-Laffitte Cedex, France

Abstract

Two configurations of membrane bioreactors were identified to achieve enhanced biological phosphorus and nitrogen removal, and assessed over more than two years with two parallel pilot plants of 2m3 each. Both configurations included an anaerobic zone ahead of the biological reactor, and differed by the position of the anoxic zone: standard pre-denitrification, or post-denitrification without dosing of carbon source. Both configurations achieved improved phosphorus removal. The goal of 50μgP/L in the effluent could be consistently achieved with two types of municipal wastewater, the second site requiring a low dose of ferric salt ferric salt <3mgFe/L. The full potential of biological phosphorus removal could be demonstrated during phosphate spiking trials, where up to 1mg of phosphorus was biologically eliminated for 10mg BOD5 in the influent. The post-denitrification configuration enabled a very good elimination of nitrogen. Daily nitrate concentration as low as 1mgN/L could be monitored in the effluent in some periods. The denitrification rates, greater than those expected for endogenous denitrification, could be accounted for by the use of the glycogene pool, internally stored by the denitrifying microorganisms in the anaerobic zone. Pharmaceuticals residues and steroids were regularly monitored on the two parallel MBR pilot plants during the length of the trials, and compared with the performance of the Berlin-Ruhleben WWTP. Although some compounds such as carbamazepine were persistent through all the systems, most of the compounds could be better removed by the MBR plants. The influence of temperature, sludge age and compound concentration could be shown, as well as the significance of biological mechanisms in the removal of trace organic compounds.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3