Evidence of specialized bromate-reducing bacteria in a hollow fiber membrane biofilm reactor

Author:

Martin K. J.1,Downing L. S.1,Nerenberg R.1

Affiliation:

1. Department of Civil Engineering and Geological Sciences, University of Notre Dame, 154 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA E-mail: ldowning@nd.edu; rnerenbe@nd.edu

Abstract

Bromate is a carcinogenic disinfection by-product formed from bromide during ozonation or advanced oxidation of drinking water. We previously observed bromate reduction in a hydrogen-based, denitrifying hollow fiber membrane biofilm reactor (MBfR). In this research, we investigated the potential existence of specialized bromate-reducing bacteria. Using denaturing gradient gel electrophoresis (DGGE), we compared the microbial ecology of two denitrifying MBfRs, one amended with nitrate as the electron acceptor and the other with nitrate plus bromate. The DGGE results showed that bromate exerted a selective pressure for a putative, specialized bromate-reducing bacterium, which developed a strong presence only in the reactor with bromate. To gain further insight into the capabilities of specialized, bromate-reducing bacteria, we explored bromate reduction in a control MBfR without any primary electron acceptors. A grown biofilm in the control MBfR reduced bromate without previous exposure, but the rate of reduction decreased over time, especially after perturbations resulting in biomass loss. The decrease in bromate reduction may have been the result of the toxic effects of bromate. We also used batch tests of the perchlorate-reducing pure culture, Dechloromonas sp. PC1 to test bromate reduction and growth. Bromate was reduced without measurable growth. Based on these results, we speculate bromate's selective pressure for the putative, specialized BRB observed in the DGGE was not growth related, but possibly based on resistance to bromate toxicity.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3