Detoxification of Waste Water Contaminated with Imidacloprid using Homogeneous and Heterogeneous Photo-Fenton Processes

Author:

Zaror C.A.1,Segura C.2,Mansilla H.3,Mondaca M. A.4,González P.5

Affiliation:

1. Chemical Engineering Department, University of Concepcion, PO Box 160-C, Correo 3, Concepción, Chile Email: czaror@udec.cl

2. Chemical Engineering Department, University of Concepcion, PO Box 160-C, Correo 3, Concepción, Chile Email: crsegura@udec.cl

3. Organic Chemistry Department, University of Concepcion, PO Box 160-C, Correo 3, Concepción, Chile Email: hmansill@udec.c

4. Microbiology Department, University of Concepcion, PO Box 160-C, Correo 3, Concepción, Chile Email: mmondaca@udec.cl

5. Public Health Department University of Concepcion, PO Box 160-C, Correo 3, Concepción, Chile Email: patrigon@udec.cl

Abstract

This paper presents experimental results on the removal of Imidacloprid from waste water using homogeneous and heterogeneous photo-Fenton processes. Experiments were conducted in a 2 L photo reactor, initial concentrations in the range 10 - 40 mg L-1 Fe(II) and 100 - 450 mg L-1 H2O2; 30 - 150 min processing times. Initial H2O2 concentration determined the extent of the oxidation process, whereas iron concentration played a key role in the process kinetics. Homogeneous photo-Fenton showed a fast initial reaction leading to 50% Imidacloprid degradation after less than 1 min treatment, followed by a slower process until full removal was achieved. Rapid Fe(II) oxidation to Fe(III) seems responsible for the initial Imidacloprid removal. TOC and COD removal up to 77% and 88%, respectively, were measured. Heterogeneous photo Fenton, using co-acrylic acid polyacrylamide resin as a solid support, presented similar trends than homogeneous applications, although the overall process proceeded at a slower rate. Untreated Imidacloprid samples showed significant acute toxicity to Daphnia magna and genotoxic effects on Bacillus subtilis. Acute toxicity and genotoxicity remained detectable even after complete pesticide removal, showing that toxic by-products were present.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3