Hypolimnetic Aeration: An Overview

Author:

McQueen D.J.1,Lean D.R.S.2

Affiliation:

1. Department of Biology, York University, Toronto, Ontario M3J 1P3

2. National Water Research Institute, Box 5050, Burlington, Ontario L7R 4A6

Abstract

Abstract Hypolimnetic aerators are now being widely used throughout Europe and are beginning to appear in small and medium sized eutrophic lakes in temperate North America. This activity has produced approximately 42 published reports dealing with experiments conducted at 16 lakes. Taken together, the evidence from these experiments suggests that well designed aerators do not cause significant destratification or warming of hypolimnetic water, but do result in measurable Increases in hypolimnetic oxygen concentration and decreases in dissolved hydrogen sulfide, methane and ammonia. Early experiments suggested that phosphorus sedimentation was unpredictable, but recent work has demonstrated that when the ratio of total iron to soluble reactive phosphorus exceeds 10:1 and pH is < 7.5, phosphorus sedimentation is assured and internal loading greatly reduced. Early experiments also showed that ammonia volatilization was unpredictable, but at pH > 8.0, ammonia volatilization will occur. Because both phosphorus sedimentation and nitrogen reduction are pH dependent, both cannot be optimally removed during the same period of time and so the experimenter is advised to select for the maximum removal of one or the other through pH manipulation. Hypolimnetic aeration induces oxygen consumption and this must be considered when choosing an appropriate compressor size. Most studies show little impact on phytoplankton blomass, but one recent experiment showed that aeration during spring turnover resulted in reduced concentrations of chlorophyll a and TP. Zooplankton populations are, for the most part, unaffected and a number of American studies have shown that hypolimnetically aerated lakes can support cold water fish populations. The aggregate practical and experimental experience suggests that well designed hypolimnetic aeration systems yield measurable improvements in water quality and will almost certainly prove to be one of the major methods used for future in situ lake restoration.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3