An assessment of mosquito breeding and control in four surface flow wetlands in tropical-subtropical Australia

Author:

Greenway M.1,Dale P.1,Chapman H.1

Affiliation:

1. School of Environmental Engineering, Faculty of Environmental Sciences, Griffith University, Brisbane, Queensland, Australia

Abstract

In Queensland, Australia, the tropical-subtropical climate is ideal to promote macrophyte growth in surface flow wetlands; however, there have been concerns that constructed wetlands are potential breeding sites for disease-bearing mosquitoes. The aim of this study was to assess whether mosquitoes were breeding in these constructed wetlands, and if so, where they breed, and what parameters might influence breeding: e.g. water quality, vegetation, or macroinvertebrate communities. A study of four surface flow constructed wetlands located in different climatic regions was undertaken. Mosquito larvae were sampled using 240 ml dippers and macroinvertebrates using dip nets. The wetland with the greatest biodiversity of macrophytes and macroinvertebrates had the least number of mosquito larvae (< 1% of all dips). Samples with most mosquito larvae occurred amongst dense mats of Paspalum grass or dead Typha. Despite the presence of larvae in some parts of these wetlands very few late instars or pupae were found i.e. completion of the mosquito life cycle to adult mosquitoes was unsuccessful. This study has shown that the presence of mosquito larvae can be minimised by increasing macro-invertebrate biodiversity, by planting a variety of macrophyte types and species, excluding aggressive plant species, and maintaining at least 30% open water. Macroinvertebrates are probably a crucial factor in the control of mosquito larvae ensuring that predation of the early instars prevents or limits the development of pupae and the emergence of adults.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3