A thermal adaptation of bacteria to cold temperatures in an enhanced biological phosphorus removal system

Author:

Erdal U.G.1,Erdal Z.K.1,Randall C.W.1

Affiliation:

1. Virginia Polytechnic and State University Blacksburg VA, 24060 USA

Abstract

Temperature is one of the key parameters that affects the reaction kinetics and performance of enhanced biological phosphorus removal (EBPR) systems. Although studies agree regarding the effect of temperature on kinetic reaction rates, there are contradictory results in the literature regarding the effect of temperature on EBPR system performance. Early investigators (Sell, Ekama et al., Daigger et al.) reported better performance with lower temperatures, but others have reported partial or complete loss of EBPR functions at low temperatures (McClintock et al., Brdjanovic et al., Beatons et al.). One speculation is that deterioration in the EBPR system performance at cold temperatures can be attributed to rigid-like behavior of the cell membranes. Most cells (not all) on the other hand have the ability to alter their membrane fatty acid composition as temperature changes in order to keep their membrane at nearly the same fluidity despite the temperature changes. This unique ability is known as homeoviscous adaptation. In this study, homeoviscous adaptation by EBPR activated sludge was investigated for a series of temperatures ranging from 20°C to 5°C using a lab scale continuous flow EBPR system fed with acetate and supplemental yeast extract. The fatty acid analysis results suggested that the unsaturated to saturated fatty acid ratio increased from 1.40 to 3.61 as temperature dropped from 20 to 5°C. The increased cis-9-hexadecanoic acid (C16:1) at 5°C strongly indicated the presence of homeoviscous adaptation in the EBPR bacterial community. Thus the cell membranes of the EBPR community were still in a fluid state, and solute transport and proton motive force were operable even at 5°C. It was concluded that loss of EBPR performance at low temperatures is not related to the physical state of the cellular membranes, but is possibly related to the application of unsuitable operational conditions (low SRT, excessive electron acceptors, low anaerobic detention time, non-acclimated sludge, etc.).

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3