Progress in sensor technology - progress in process control? Part II: results from a simulation benchmark study

Author:

Alex J.1,Rieger L.2,Winkler S.3,Siegrist H.2

Affiliation:

1. ifak, Institute for Automation and Communication, Steinfeldstrasse, 39179 Barleben, Germany (E-mail: ali@ifak.fhg.de)

2. EAWAG, Swiss Federal Institute for Environmental Science and Technology, Ueberlandstrasse 133, PO Box 611, 8600 Duebendorf, Switzerland (E-mail: leiv.rieger@eawag.ch)

3. Institute of Water Quality and Waste Management, Vienna University of Technology, A - 1040 Vienna, Karlsplatz 13/E 226, Austria (E-mail: swinkler@iwag.tuwien.ac.at)

Abstract

To show the impact of sensor behaviour on the control result, four strategies for aeration control are tested using different sensor characteristics. It is demonstrated, on the one hand, how an increasing response time will limit the achievable control quality and, on the other hand, how a given sensor characteristic can be taken into account for the controller design. The presented tests show that an improvement potential by control for WWTPs is available but this potential is limited compared to proper DO control with fixed set-points. To activate this control potential, sufficient control authority must be available and a careful control design is required. It can be shown that using feedback control, sensors with a small response time have significant advantages compared to conventional sensors. Using feed forward control, the improvement potential by control is considerably higher and additionally, the sensor delay can be integrated into the controller design. The presented discussion is based on simulation studies performed on a standardised benchmark case. For these tests it was necessary to include sensor models into the simulation model. It can be stated that the usage of sensor models is necessary for the application of dynamic simulation for the design and evaluation of WWTP control and in general to achieve realistic results.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3