Nutrient removal using anaerobically fermented leachate of food waste in the BNR process

Author:

Lee C.Y.12,Shin H.S.13,Chae S.R.1,Nam S.Y.14,Paik B.C.1

Affiliation:

1. Department of Civil Engineering, Korea Advanced Institute of Science & Technology, 373-1 Guseong-dong, Yuseong-gu, Daejon 305-701, Korea

2. R&D Team, Institute of Technology, Engineering & Construction Group, Samsung Corporation, 428-5 Gongse-ri, Giheung-eup, Yongin-city, Kyunggi-Do, 449-900, Korea

3. Department of Environmental Engineering, Hankyong National University, 67 Seokjeong-dong, Anseong, Gyeonggi-do, 456-749, Korea

4. Department of Environmental Engineering, Yeosu National University, San 96-1, Dundeok-dong, Yeosusi, Jeollanam-do, 550-749, Korea

Abstract

Nutrients removal efficiencies highly depend on the presence of biodegradable organic carbon in the biological nutrient removal (BNR) process but most domestic wastewater in Korea has shown a low C/N ratio and has a small amount of biodegradable COD (chemical oxygen demand). On the other hand, about 11,577 tons of food waste that contains a lot of organic material has been produced in Korea per day. The feasibility and applicability of anaerobically fermented leachate of food waste (AFLFW) as an external carbon source was examined in the laboratory-scale BNR process at different operation conditions with synthetic wastewater and domestic sewage. As the addition of AFLFW increased, the average removal efficiencies of SCOD, T-N, T-P changed from 96%, 60%, and 2% to 90%, 77%, and 67%, respectively. From anoxic nitrate utilization tests, it was observed that once the readily biodegradable COD (especially VFAs) was depleted, the denitrification rate reduced from 8.2 mg NO3-N/g VSS/hr to 0.7 mg NO3-N/g VSS/hr. From the molecular size distribution test, it was concluded that about 60% of soluble COD in effluent, which was considered to originate from AFLFW, had a large molecular size (> 30kDa) that was not used by microorganisms.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3