Chemical destruction of MTBE using Fenton's Reagent: effect of ferrous iron/hydrogen peroxide ratio

Author:

Burbano A.1,Dionysiou D.1,Suidan M.1,Richardson T.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221,U.S.A

2. National Risk Management Research Laboratory (NRMRL), U.S., EPA, Cincinnati, Ohio 45268

Abstract

In previous laboratory experiments Fenton's Reagent (FR) was successfully used as the source of hydroxyl radicals (OH•) for chemical treatment of low concentrations of methyl tert-butyl ether (MTBE) in water. Although under certain conditions MTBE degradation levels as high as 99.99% were achieved, none of these experiments resulted in complete MTBE mineralization. In all cases, these experiments applied FR as an equimolar concentration of ferrous iron (Fe2+) and hydrogen peroxide (H2O2). The present study investigates the effect of H2O2/Fe2+ molar ratio on the extent of degradation of MTBE and intermediate products in water at pH = 3.0. The initial concentration of MTBE studied was 0.0227 mM (approximately 2 mg/L). Initially, the dose of Fe2+ was kept constant at a Fe2+/MTBE molar ratio of 10:1 and the dose of H2O2 was varied to achieve different H2O2/Fe2+ molar ratios. The results revealed that higher degradation efficiency was achieved when FR was used as an equimolar mixture (H2O2/Fe2+ molar ratio = 1.0). The extent of MTBE degradation decreased when the H2O2/Fe2+ molar ratio was changed to values higher or lower than 1.0. These results suggest that a stoichiometric relationship (1:1) between the FR components optimizes the degradation process for this reactant system. It is hypothesized that an excess of H2O2 enhances the effect of reactions that scavenge OH•, while a decreased amount of H2O2 would be a limiting factor for the Fenton Reaction.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3