Bacterial biosorbent for removing and recovering copper from electroplating effluents

Author:

Lo W.1,Chua H.2,Wong M.-F.2,Yu P.1

Affiliation:

1. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR

2. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR

Abstract

Investigations were carried out to study the removal and recovery of Cu(II) ions from wastewater by Micrococcus sp. The Langmuir isotherm model described very well the equilibrium behavior of copper biosorption, with maximum biosorption capacity (qmax) reaching 52.1 mg Cu2+/g dry cell at pH 6. Biomass prewashed with sulfuric acid (0.05 mol l−1) and sodium sulfate (1 mol l−1) solutions were shown to increase the copper removal capabilities up to 27% and 16%, respectively. Copper uptake by cells was negligible at pH 2.0 and then increased quickly with increasing pH until 6.0. Cells of Micrococcus sp. were immobilized in 2% calcium alginate and 10% polyacrylamide gel beads. A counter-current process comprising a series of immobilized cell reactors was developed for removing and recovering copper from electroplating effluents. This process was capable of producing an effluent at low copper concentration, with only a minimum amount of desorbing agent used. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Cu2+ exchanged with K+ and Ca2+ on the cell wall of Micrococcus sp., thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this bacterial strain.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3