Removal of metals from aqueous solutions using natural chitinous materials

Author:

Rae I.B.1,Gibb S.W.1

Affiliation:

1. Environmental Research Institute (ERI) of the North Highland College, UHI Millennium Institute, Castle Street, Thurso, Caithness, KW14 7JD, UK

Abstract

Four naturally derived chitinous materials, commercial cryogenically milled carapace (CCMC), mechanically milled carapace (MMC), chitin and chitosan, were assessed for their ability to remove a range of alkali, alkaline earth, transition and heavy metals from aqueous media in flow-through column trials. The materials showed a poor affinity for the alkali metals and alkaline earth metals but significantly greater affinity for transition and heavy metals. In general, chitin was the least efficient material for removal of transition and heavy metals (≈35%) while chitosan was most effective (>99%). CCMC and MMC both removed >90% of transition and heavy metals tested from solution. Batch studies conducted using copper as a reference metal demonstrated that removal was dependent on a number of variables including pH, contact time, particle size, metal concentration, metal type and the physio-chemical characteristics of the materials. Detailed analysis of the results from these studies indicate that removal is a complex process and that metals can be sequestered from solution by a number of mechanisms including adsorption, absorption and precipitaion.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3