Investigation of oxygen transfer rates in full scale membrane bioreactors

Author:

Cornel P.1,Wagner M.1,Krause S.1

Affiliation:

1. Darmstadt University of Technology, Institute WAR, Wastewater Technology, Petersenstr. 13, 64287 Darmstadt, Germany

Abstract

In membrane bioreactors (MBRs) for wastewater treatment the secondary clarifier is replaced by a membrane filtration. The advantage of this process is a complete removal of solids from the effluent and a small footprint due to possible high biomass concentrations (MLSS). As oxygen supply counts for more than 70% of total energy cost in municipal WWTPs the design of the aeration system is vital for efficient operation. In this respect the a-value is an important influencing factor. The a-value depends on the MLSS-concentration as shown in various publications and confirmed by own measurements in two full scale municipal MBRs with MLSS ranging from 7 and 17 kg/m3. Furthermore it must be taken into account that a-values are not static values; they vary with loading rates, surfactant concentrations, air flow rates, MLSS concentrations, etc. The average a-value at typical 12 kg/m3 MLSS for municipal MBRs is about 0.6 ± 0.1. As submerged configured MBRs are equipped with an additional coarse bubble “crossflow” aeration system for fouling control, supplementary energy is consumed. Therefore MBRs need more energy compared to conventional treatment plants. Measurements of both aeration systems show that the fine bubble aeration system is more efficient by a factor of three concerning oxygen supply compared to the coarse bubble system.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3