Review of operation of urban drainage systems in cold weather: water quality considerations

Author:

Marsalek J.1,Oberts G.2,Exall K.1,Viklander M.3

Affiliation:

1. National Water Research Institute, Burlington, Ontario L7R 4A6, Canada

2. Emmons and Olivier Resources, Inc., Oakdale, Minnesota, USA

3. Luleå University of Technology, Luleå, Sweden

Abstract

Cold climate imposes special requirements on urban drainage systems, arising from extended storage of precipitation and pollutants in the catchment snowpack, processes occurring in the snowpack, and changes in catchment surface and transport network by snow and ice. Consequently, the resulting catchment response and runoff quantity differ from those experienced in snow- and ice-free seasons. Sources of pollutants entering urban snowpacks include airborne fallout, pavement and roadside deposits, and applications of de-icing and anti-skid agents. In the snowpack, snow, water and chemicals are subject to various processes, which affect their movement through the pack and eventual release during the melting process. Soluble constituents are flushed from the snowpack early during the melt; hydrophobic substances generally stay in the pack until the very end of melt and coarse solids with adsorbed pollutants stay on the ground after the melt is finished. The impacts of snowmelt on receiving waters have been measured mostly by the snowmelt chemical composition and inferences about its environmental significance. Recently, snowmelt has been tested by standard bioassays and often found toxic. Toxicity was attributed mostly to chloride and trace metals, and contributed to reduced diversity of benthic and plant communities. Thus, snowmelt and winter runoff discharged from urban drainage threaten aquatic ecosystems in many locations and require further studies with respect to advancing their understanding and development of best management practices.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3