Nutrients in urine: energetic aspects of removal and recovery

Author:

Maurer M.1,Schwegler P.1,Larsen T.A.1

Affiliation:

1. EAWAG, Environmental Engineering, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland

Abstract

The analysis of different removal and recovery techniques for nutrients in urine shows that in many cases recovery is energetically more efficient than removal and new-production from natural resources. Considering only the running electricity and fossil energy requirements for the traditional way of wastewater treatment and fertiliser production, the following specific energy requirements can be calculated: 45 MJ kg-1N for denitrification in a WWTP, 49 MJ kg-1P for P-precipitation in a WWTP, 45 MJ kg-1N for N-fertiliser and 29 MJ kg-1P for P-fertiliser production. These numbers are higher than the values derived for thermal volume reduction of urine (35 MJ kg-1N for eliminating 90% water) or production of struvite (102 MJ kg-1N, including 2.2 kg P). Considering only the electricity and fossil energy for the traditional way of wastewater treatment and fertiliser production, the energy value of 1 PE urine is 0.87 MJ PE-1d-1 (fertiliser value: 0.44, wastewater treatment: 0.43 MJ PE-1d-1). A more detailed life cycle assessment (LCA) of the entire urine collection system, including the required materials and the environmental burden, support the energy analysis. The LCA compares conventional denitrification in a wastewater treatment plant with collecting urine in households, reducing the volume by evaporation and using it as a multi-nutrient fertiliser. The primary energy consumption for recovery and reuse of urine, including the nutrients N, P and K, is calculated with 65 MJ kg-1N, compared with 153 MJ kg-1N derived for the conventional 'recycling over the atmosphere'.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 308 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3