Adsorption study of a commonly used antidepressant drug, fluoxetine hydrochloride, onto a crosslinked β-cyclodextrin-carboxymethylcellulose polymer

Author:

Bonenfant Danielle1,Mimeault Murielle2,Niquette Patrick3,Hausler Robert1

Affiliation:

1. Département de génie de la construction, STEPPE-École de technologie supérieure, 1100, Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2. Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, 7052 DRC, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA

3. Independant consultant, 245, du Manoir Ave., St Elzear, Québec, Canada G0S 2J0

Abstract

A study was carried out by ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies to establish the efficiency of adsorption of fluoxetine hydrochloride (FLU), onto a crosslinked β-cyclodextrin-carboxymethylcellulose (β-CD-CMC) polymer. The adsorption was performed in mixtures containing aqueous FLU solution at 20 mg/L and 0.01–0.30 g of the β-CD-CMC polymer, at 25 °C, and atmospheric pressure under stirring. The results have revealed that the adsorption is a rapid process and the polymer possesses a high affinity for FLU with an adsorption capacity of 5.076 mg of FLU/g of polymer. This adsorption may involve the formation of a stable inclusion compound β-CD-CMC/FLU through the penetration of the FLU aromatic ring (A and/or B) into the β-CD cavity, and a physical adsorption with the polymer network. The inclusion compound can be stabilized by the formation of H-bonds between the –CF3 group of FLU and the 6′-OH group of β-CD, and van der Waals interactions between the FLU aromatic ring and β-CD cavity. The data from a kinetic study have also indicated that the adsorption process was well described by the pseudo-second-order kinetic model, in which the initial adsorption rate and constant were estimated at 1.938 mg/g min and 0.075 g/mg min, respectively. Moreover, the results of adsorption equilibrium fitted the Freundlich isotherm, indicating a multilayer coverage and heterogeneous surface. Together, these results suggest that the adsorption of FLU onto the crosslinked β-CD-CMC polymer could constitute an advantageous technology for removing this commonly used antidepressant drug from wastewater due to the high adsorption capacity of the polymer and non-toxic character of β-CD to humans and environment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3