Abu Dhabi's strategic tunnel enhancement programme: odour extraction system approaches

Author:

Cowden Scott1,Witherspoon Jay2,Orakzai Shahzad3,Krause T.4

Affiliation:

1. CH2M HILL, 1100 NE Circle Blvd., Suite 300 Corvallis, OR 97330, USA

2. CH2M HILL, Level 7, 9 Help Street, Chatswood, NSW, Australia 2067

3. Abu Dhabi Sewerage Services Company, P.O. Box 108801, Abu Dhabi, UAE

4. CH2M HILL, 125 S. Wacker Drive, Suite 3000, Chicago, IL 60606, USA

Abstract

The Emirate of Abu Dhabi has experienced tremendous growth since the mid-1970s resulting in significant overloading of its existing sewerage system. Master planning determined that the best long-term wastewater collection and conveyance solution was construction of a deep tunnel sewer system. Implementation of this massive project faced numerous challenges, including the goal of no odours and limited odour control facilities. To accomplish this, the consultant team examined a unique approach of a single odour control system installed at the proposed downstream tunnel pumping station. Rigorous analysis utilising computer-based models confirmed the viability of this approach. However, other approaches including multiple satellite (localised or regional) odour extraction systems were considered. To better understand entrained air forces at vortex drops, and to confirm the preferred odour extraction approach, physical modelling of drop structures and overall tunnel system was implemented. Results and findings concluded that a regional odour extraction system approach was preferred over a single (centralised) extraction approach. This paper focuses on the process of selecting the preferred odour extraction approach and preliminary capacity sizing of regional systems.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The importance of sewer biofilms;WIREs Water;2016-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3