Energy losses at three-way circular drop manholes under surcharged conditions

Author:

Arao Shinji1,Kusuda Tetsuya2,Moriyama Katsumi3,Hiratsuka Shunsuke1,Asada Jyunsaku1,Hirose Nozomu1

Affiliation:

1. Dept. of Civil and Environmental Eng., Matsue College of Technology, 14-4 Nishi-ikuma, Matsue, 690-8518, Japan

2. The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan

3. Dept. of Civil Eng., Kyushu Kyoritsu University, 1-8 Jiyugaoka, Yahatanishiku, Kitakyushu 807-8585, Japan

Abstract

Energy loss at manholes is of importance in the design of storm sewer networks and in flood-analysis. Some researchers have already investigated the energy loss at three-way manholes under surcharged conditions. However, formulation to calculate the energy loss at manholes, including all variables of structural elements of the pipes and of the manhole has not yet been accomplished. Therefore, more study to formulate the energy loss at three-way drop manholes is needed. In this study, the ratio of the diameter between inflow pipes and an outflow pipe, the ratio of flow rates between those pipes, water depth in a manhole and the drop gaps between those pipes are considered and the energy loss at three-way circular drop manholes is examined. Finally, a modified formula, more accurate than that in the U.S. Federal Highway Administration's 2001 Urban Drainage Design Manual is proposed. The proposed formula takes the influence of the ratio of the diameter between inflow pipes and outflow pipe and drop gaps between those pipes into consideration. The calculated energy loss coefficients in both straight-through and lateral pipes successfully reproduce the measured values.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3