Affiliation:
1. Department of Environment, North Tehran Branch, Islamic Azad University, Tehran, Iran
2. Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
3. Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
Physico-chemical water quality parameters and nutrient levels such as water temperature, turbidity, saturated oxygen, dissolved oxygen, pH, chlorophyll-a, salinity, conductivity, total nitrogen and total phosphorus, were measured from April to September 2011 in the Karaj dam area, Iran. Total nitrogen in water was modelled using an artificial neural network system. In the proposed system, water temperature, depth, saturated oxygen, dissolved oxygen, pH, chlorophyll-a, salinity, turbidity and conductivity were considered as input data, and the total nitrogen in water was considered as output. The weights and biases for various systems were obtained by the quick propagation, batch back propagation, incremental back propagation, genetic and Levenberg–Marquardt algorithms. The proposed system uses 144 experimental data points; 70% of the experimental data are randomly selected for training the network and 30% of the data are used for testing. The best network topology was obtained as (9-5-1) using the quick propagation method with tangent transform function. The average absolute deviation percentages (AAD%) are 2.329 and 2.301 for training and testing processes, respectively. It is emphasized that the results of the artificial neural network (ANN) model are compatible with the experimental data.
Subject
Water Science and Technology,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献