Measurement and mathematical modelling of nutrient level and water quality parameters

Author:

Alasl M. Kashefi1,Khosravi M.2,Hosseini M.2,Pazuki G. R.3,Nezakati Esmail Zadeh R.1

Affiliation:

1. Department of Environment, North Tehran Branch, Islamic Azad University, Tehran, Iran

2. Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

3. Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Physico-chemical water quality parameters and nutrient levels such as water temperature, turbidity, saturated oxygen, dissolved oxygen, pH, chlorophyll-a, salinity, conductivity, total nitrogen and total phosphorus, were measured from April to September 2011 in the Karaj dam area, Iran. Total nitrogen in water was modelled using an artificial neural network system. In the proposed system, water temperature, depth, saturated oxygen, dissolved oxygen, pH, chlorophyll-a, salinity, turbidity and conductivity were considered as input data, and the total nitrogen in water was considered as output. The weights and biases for various systems were obtained by the quick propagation, batch back propagation, incremental back propagation, genetic and Levenberg–Marquardt algorithms. The proposed system uses 144 experimental data points; 70% of the experimental data are randomly selected for training the network and 30% of the data are used for testing. The best network topology was obtained as (9-5-1) using the quick propagation method with tangent transform function. The average absolute deviation percentages (AAD%) are 2.329 and 2.301 for training and testing processes, respectively. It is emphasized that the results of the artificial neural network (ANN) model are compatible with the experimental data.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3