A comparative analysis of practitioners' experience in sediment remediation projects to highlight best practices

Author:

Jawed Zobia1,Krantzberg Gail1

Affiliation:

1. W. Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada

Abstract

Abstract The Randle Reef contaminated site, located in the southwest corner of Hamilton Harbour, is approximately 60 hectares in size. This site contains approximately 695,000 m3 of sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) and metals. The complex Randle Reef sediment remediation project is finally coming to fruition after more than 30 years of study, discussion, collaborations, stakeholder consensus-building, and debate. This paper unravels the reasons behind the delays associated with implementing sediment management at the Randle Reef site. In-depth interviews with experts and professionals from organizations who are/were involved in the project were conducted to identify the nature of performance in five theme areas that are important for successful action namely: (1) participation of appropriate actors with common objectives; (2) funding and resources; (3) decision-making process; (4) research and technology development; and (5) public and political support. It is evident from this study that the hurdles to progress with addressing contaminated sediment sites involve technical, political, regulatory as well as social challenges. We offer potential solutions and a series of recommendations based on experts' first-hand experience with the management of such complex sites to inform how future remediation projects can overcome obstacles. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contaminated aquatic sediments;Water Environment Research;2020-09-24

2. Editorial – L'avenir est prometteur. L'avenir est ouvert!;Water Quality Research Journal;2020-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3