Prediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN)

Author:

Zhu Senlin1,Heddam Salim2

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. Faculty of Science, Agronomy Department, Hydraulics Division, Laboratory of Research in Biodiversity Interaction Ecosystem and Biotechnology, University 20 Août 1955, Route El Hadaik, BP 26, Skikda, Algeria

Abstract

Abstract In the present study, two non-linear mathematical modelling approaches, namely, extreme learning machine (ELM) and multilayer perceptron neural network (MLPNN) were developed to predict daily dissolved oxygen (DO) concentrations. Water quality data from four urban rivers in the backwater zone of the Three Gorges Reservoir, China were used. The water quality data selected consisted of daily observed water temperature, pH, permanganate index, ammonia nitrogen, electrical conductivity, chemical oxygen demand, total nitrogen, total phosphorus and DO. The accuracy of the ELM model was compared with the standard MLPNN using several error statistics such as root mean squared error, mean absolute error, the coefficient of correlation and the Willmott index of agreement. Results showed that the ELM and MLPNN models perform well for the Wubu River, acceptably for the Yipin River and moderately for the Huaxi River, while poor model performance was obtained at the Tributary of Huaxi River. Model performance is negatively correlated with pollution level in each river. The MLPNN model slightly outperforms the ELM model in DO prediction. Overall, it can be concluded that MLPNN and ELM models can be applied for DO prediction in low-impacted rivers, while they may not be appropriate for DO modelling for highly polluted rivers. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).

Funder

the National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference49 articles.

1. Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn;Ecological Modelling,2005

2. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study;Environmental Science and Pollution Research,2013

3. Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado;ASCE Journal of Environmental Engineering,2012

4. Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques;KSCE Journal of Civil Engineering,2017

5. Potamodromous fish movements under multiple stressors: connectivity reduction and oxygen depletion;Science of the Total Environment,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3