How extreme can unit discharge become in steep Norwegian catchments?

Author:

Bruland Oddbjørn1

Affiliation:

1. Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract

Abstract This study presents results of observations and analysis of the flood event in Utvik on 24 July 2017. Observations during and after the event, hydraulic simulations and hydrological modelling along with meteorological observations, are used to estimate the peak discharge of the flood. Although both observations and hydraulic simulations of flood extremes are uncertain, even the most conservative assumptions lead to discharge estimates higher than 160 m3/s at culmination of the flood from the 25 km2-large catchment. The most extreme assumptions indicate it may have been up to 400 m3/s, but there is also strong evidence for the discharge at culmination being between 200 and 250 m3/s. Observations disclosed that the majority of water came from about 50% of the catchment area giving unit discharges up to 18 to 22 m3/s,km2. If the entire catchment contributed it would be from 9 to 11 m3/s,km2. This is significantly higher than previously documented unit discharges in Norway and in the range of the highest observed peak unit discharges in southern Europe. The precipitation causing this event is estimated to be three to five times higher than a 200-year precipitation taken from the intensity–duration–frequency curves for the studied region.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3