Analysis of topographic controls on depletion curves derived from airborne lidar snow depth data

Author:

Schneider Dominik1,Molotch Noah P.12,Deems Jeffrey S.3,Painter Thomas H.2

Affiliation:

1. Department of Geography, University of Colorado at Boulder, Boulder, CO, USA and Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO, USA

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

3. National Snow and Ice Data Center, CIRES, 449 UCB, University of Colorado, Boulder, CO 80309, USA

Abstract

Abstract The annual consistency of spatial patterns of snow accumulation and melt suggests that the evolution of these patterns, known as depletion curves, is useful for estimating basin water content and runoff prediction. Theoretical snow cover depletion curves are used in models to parameterize fractional snow-covered area (fSCA) based on modeled estimates of snow accumulation and snowmelt. Directly measuring the spatio-temporal snow distribution, characterization of depletion curves, and understanding how they vary across mountainous landscapes was not possible until the recent U.S. National Aeronautics and Space Administration (NASA) Airborne Snow Observatory (ASO). Herein, for the first time, high-resolution spatio-temporal snow depth information from the ASO is used to derive observation-based snow cover depletion curves across physiographic gradients by estimating the slope of the fSCA–snow depth relationship (i.e. depletion slope). The depletion slope reveals important insights into snow processes as it is strongly related to snow depth variability (r2 = 0.58). Regression tree analysis between observed depletion slopes and physiography, particularly vegetation height and terrain roughness, displays clear nonlinear dynamics and explains 31% of the variance in depletion slope. This unique observation-based analysis of snow cover depletion curves has implications for energy and water flux calculations across many earth system models.

Funder

Earth Sciences Division

National Aeronautics and Space Administration

U.S. Department of Agriculture

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3