The spatial pattern of periphytic algae communities and its corresponding mechanism to environmental variables in the Weihe River Basin, China

Author:

Liu Yixin1,Fu Jiaxu1,Cheng Dandong1,Lin Qidong1,Su Ping1,Wang Xinxin1,Sun Haotian1

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China

Abstract

Abstract Periphytic algae is a useful indicator of aquatic ecological conditions. We investigated the periphytic algae on natural substrate and the environmental variables at 44 sites on three river systems in the Weihe River Basin (WRB). A total of 84 species are identified, representing 37 genera. The most common genera were Navicula, Oscillatoria, Nitzschia, Scenedesmus, Cymbell, and Fragilaria. One-way analysis of variance (ANOVA) indicated significant differences among the three river systems in environmental variables (p < 0.05). Non-metric multidimensional scaling (NMDS) analyses also showed differences in periphytic algae communities in the three river systems (p < 0.05) and identified different dominant species in each river system. Canonical correspondence analysis (CCA) and Monte Carlo permutation tests revealed that nutrient concentration, WT, and altitude were the most important variables affecting the structure and distribution of periphytic algae communities. Chemical variables were the most accounted for environmental variables (12.5%), while physical variable and geographical factors (5.8% in total) play a relevant minor role. Our results demonstrate that Navicula pupula, Navicula radiosq, Nitzschia palea, and Nitzschia denticula, exhibiting wide ecological amplitude, are tolerant of high concentrations of nutrient pollution. Variation of periphytic algae communities in WRB is due to the combination of anthropogenic and natural factors including agricultural and domestic wastes water inputting, land use patterns, geology, climatic changes, and river hydrology.

Funder

National Natural Science Foundation of China

Science and Technology Project of Shaanxi Provincial Water Resources Department

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3