Evaluation of coupled ANN-GA model to prioritize flood source areas in ungauged watersheds

Author:

Dehghanian Naser1,Saeid Mousavi Nadoushani S.1,Saghafian Bahram2,Damavandi Morteza Rayati3

Affiliation:

1. Department of Water Resources Management, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, I.R. Iran

2. Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran

3. Department of Technical and Engineering, Islamic Azad University, Qaemshahr, Iran

Abstract

Abstract An important step in flood control planning is identification of flood source areas (FSAs). This study presents a methodology for identifying FSAs. Unit flood response (UFR) approach has been proposed to quantify FSAs at subwatershed and/or cell scale. In this study, a distributed ModClark model linked with Muskingum flow routing was used for hydrological simulations. Furthermore, a fuzzy hybrid clustering method was adopted to identify hydrological homogenous regions (HHRs) resulting in clusters involving the most effective variables in runoff generation as selected through factor analysis (FA). The selected variables along with 50-year rainfall were entered into an artificial neural network (ANN) model optimized via genetic algorithm (GA) to predict flood index (FI) at cell scale. The case studies were two semi-arid watersheds, Tangrah in northeastern Iran and Walnut Gulch Experimental Watershed in Arizona. The results revealed that the predicted values of FI via ANN-GA were slightly different from those derived via UFR in terms of mean squared error (MSE), mean absolute error (MAE), and relative error (RE). Also, the prioritized FSAs via ANN-GA were almost similar to those of UFR. The proposed methodology may be applicable in prioritization of HHRs with respect to flood generation in ungauged semi-arid watersheds.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3