Reasons for the homogenization of the seasonal discharges in the Yangtze River

Author:

Chai Yuanfang1,Zhu Boyuan2,Yue Yao1,Yang Yunping3,Li Sixuan1,Ren Jinqiu1,Xiong Haibin1,Cui Xin1,Yan Xia4,Li Yitian1

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China

2. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Human Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China

3. Key Laboratory of Engineering Sediment, Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China

4. River Department, Yangtze River Scientific Research Institute, Wuhan 430010, China

Abstract

Abstract Allocations of water discharges between dry and flood seasons along the Yangtze River have significantly homogenized during the past decades, mainly due to precipitation change, regulation of key hydraulic works on the mainstream like the Three Gorges Reservoir (TGR), and the construction of numerous dams scattered in sub-basins. To reveal the specific roles of these three major factors in changing the seasonal discharges of the whole Yangtze River, this paper analyzes daily discharges during 1961–2014 at 16 hydrological stations from the far upper reach (the Jinshajiang Reach) to the estuary. We found that precipitation has only homogenized in areas 427 km downstream of the TGR, contributing 9.5–23.6% to the homogenized discharges. Even though the TGR is the largest hydraulic works in the world, it only contributes 17.5–27.2% to the downstream homogenization of seasonal discharge. By comparison, dams in sub-regions are a major contributor (61.1–100%) in the homogenized reach either upper or lower to the TGR. Of all the sub-basins, dams in Hanjiang River basin have the most significant effect (16.9%) on changing the allocations of seasonal discharges to the sea, followed by Wujiang (11.5%), Jialingjiang (10.1%), Yalongjiang (9.4%), Qingjiang (8.4%), and Daduhe-Minjiang (4.7%) river basins.

Funder

Youth Project of National Natural Science Foundation of China

National Natural Science Foundation of China

National Key Basic Research Development Program “973 Project” of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3