Affiliation:
1. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
Abstract
Abstract
A nonstationary standardized runoff index (NSRI) is proposed by using the GAMLSS framework to assess the hydrological drought under nonstationary conditions. The definition of the NSRI is similar to that of SRI, but using a nonstationary Gamma distribution by incorporating meteorological variables and antecedent runoff as covariates to describe the characteristics of runoff series. The new drought index is then applied to the upper reach of the Heihe River basin. Four models are developed, in which one is stationary, and the other three are nonstationary with one, two and three covariates, respectively. Results show that, for the nonstationary runoff series, the nonstationary models are more robust and reliable than the stationary one. Among these models, the model with two covariates performs the best. For the model with one covariate, the precipitation shows better in the fitting as a covariate in rainy seasons, and the antecedent runoff shows better in dry seasons. The NSRI identifies more drought events than SRI does, and the drought conditions in our case are mainly affected by precipitation. It is proved that the proposed new drought index is a more effective method for drought assessments under nonstationary conditions.
Funder
Fundamental Research Funds for the Central Universities
Subject
Water Science and Technology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献