Assessment of hydrological drought based on nonstationary runoff data

Author:

Sun Xueli1,Li Zhanling1,Tian Qingyun1

Affiliation:

1. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Abstract A nonstationary standardized runoff index (NSRI) is proposed by using the GAMLSS framework to assess the hydrological drought under nonstationary conditions. The definition of the NSRI is similar to that of SRI, but using a nonstationary Gamma distribution by incorporating meteorological variables and antecedent runoff as covariates to describe the characteristics of runoff series. The new drought index is then applied to the upper reach of the Heihe River basin. Four models are developed, in which one is stationary, and the other three are nonstationary with one, two and three covariates, respectively. Results show that, for the nonstationary runoff series, the nonstationary models are more robust and reliable than the stationary one. Among these models, the model with two covariates performs the best. For the model with one covariate, the precipitation shows better in the fitting as a covariate in rainy seasons, and the antecedent runoff shows better in dry seasons. The NSRI identifies more drought events than SRI does, and the drought conditions in our case are mainly affected by precipitation. It is proved that the proposed new drought index is a more effective method for drought assessments under nonstationary conditions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3