Analysis of main influencing factors of energy dissipation and flow diversion effects of rough-strip energy dissipators in curved spillways based on Plackett–Burman design

Author:

Zhang Honghong12ORCID,Mu Zhenwei12,Fan Fan12,Yao Li3

Affiliation:

1. a College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China

2. b Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, China

3. c College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China

Abstract

Abstract Rough-strip energy dissipators (R-SEDs) at the bottom of spillway bends have energy dissipation and flow diversion effects on bend flow. In this paper, twelve Plackett-Burman tests were conducted. Energy dissipation rate and coefficient of variation of superelevation were used as evaluation indices. Influencing factors (i.e., relative height, height ratio, spacing, angle and thickness of R-SEDs as well as centerline radius, width, angle and bottom slope of the bend) of R-SEDs' energy dissipation and flow diversion effects were analyzed using Minitab 21.1 in combination with the entropy weight method and the TOPSIS method. Relative height of R-SED and bend angle were significant factors affecting energy dissipation effects; height ratio of R-SED and centerline radius of the bend were significant factors affecting flow diversion effects; the coefficient of variation of superelevation had a larger weight (0.549) than the energy dissipation rate (0.451), indicating that R-SEDs' flow diversion effects were larger than their energy dissipation effects; height ratio of R-SED, centerline radius of the bend and bend angle were significant factors affecting overall energy dissipation and flow diversion effects and selected as key factors for further steepest climbing tests and response surface design.

Funder

National Natural Science Foundation of China

University Research Program Innovation Team Project of Xinjiang Uygur Autonomous Region

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3