Affiliation:
1. a Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
2. b Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
3. c Shenzhen Shengya Environment Technology Ltd., Shenzhen 518000, China
Abstract
Abstract
Chlorination disinfection in water treatments may be highly destructive to microplastics (MPs). Herein, low- and high-dose (concentration–time values at 75 and 9,600 mg min L−1, respectively) chlorination processes were used to simulate short-term chlorination in drinking water treatment plants and long-term residual chlorine reaction in drinking water supply systems, respectively. Both chlorination processes induced modifications to polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) MPs, varying in polymer types and sizes. Oxidized and chlorinated bonds were detected, and destructed surfaces with increased specific surface area and reduced hydrophobicity were observed. As a result, the sorption capacity of all MPs was weakened, e.g., low-dose chlorination (pH 7) depressed the sorption of ciprofloxacin by 6.5 μm PE (Kf from 0.140 to 0.128 L g−1). The sinking behavior of PET, PS, and PVC MPs was enhanced, e.g., the sinking ratio of 200 μm PET increased by ∼30% after low-dose chlorination (pH 7). By contrast, PE tended to float after high-dose chlorination. Furthermore, chlorination of MPs generated various products, which were the degraded fragments from the MP skeleton. In general, chlorination disinfection reduces the potential of MPs as transport vectors of organic contaminants.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献