Assessment of emerging endocrine-disrupting compounds, namely estrone, 17-beta-estradiol, estriol, and 17-alpha-ethinyl estradiol, in the drinking water piping network of Tehran

Author:

Rastkari Noushin12,Ahmadkhaniha Reza3,Beikmohammadi Masoumeh4,Yousefi Seyedeh Somayeh4

Affiliation:

1. a Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

2. b Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

3. c Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

4. d Department of Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Abstract In recent decades, micro-pollutants like estrogen hormones have been considered due to adverse health effects on humans and the environment despite very low concentrations of 0.1–20 ng/L. In the present study, drinking water was sampled from the six areas of Tehran in summer (August 2020), autumn (November 2020), winter (February 2021), and spring (May 2021) to evaluate natural and synthetic estrogen hormones (estrone (E1), 17-beta-estradiol (E2), estriol (E3), and 17-alpha-ethinyl estradiol (EE2)). The samples were transferred to the laboratory and the solid-phase extraction (SPE) method was used to extract the hormones, and the type and amount of hormones were examined by gas chromatography–mass spectrometry. According to the results, the highest concentrations were related to E1 and E2 compounds at 1.96 and 2.13 ng/L, respectively, in summer and autumn (device detection limit = 0.5 ng/L). In addition, concentrations of compounds E1 and E2 were lower than the detection limit in spring and winter in all samples, and compounds E3 and EE2 were not identified in any samples or seasons. Commonly, the concentration of steroid hormones increased in the dry seasons (summer and autumn), while in the spring and winter concentrations were less than the device detection limit because of rainfall.

Funder

National Institute for Medical Research Development

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference93 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3