Numerical investigation of silted-up dam-break flow with different silted-up sediment heights

Author:

Gu Zhenghua1,Wang Tinghui1,Meng Wenkang2,Yu Ching-hao2,An Ruidong2ORCID

Affiliation:

1. a Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P.R. China

2. b State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, P.R. China

Abstract

Abstract The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried out. A kind of Eulerian–Eulerian two-fluid model (TFM), coupled level set and volume of fluid (CLSVOF) methods, is presented. In order to calculate the motions of the air–water interface and the sediment simultaneously, kinetic particle theory (KPT) and computational fluid dynamics (CFD) are combined. The rheology-based constitutive equations of sediment are also considered to simulate scouring and deposition. In addition, a partial-slip boundary condition (BC) for the velocity of the sediment phase at stationary walls is implemented. The simulation results of the benchmark case demonstrate that the proposed model can effectively simulate the silted-up dam-break flow while taking into account multi-interface capturing problems. Subsequently, the simulations of the silted-up dam-break flow over dry are investigated numerically in a three-dimensional long channel. The simulated results reveal that, in the dam-break flows, the silted-up sediment height has a significant influence on wave propagation, dynamic pressure loads, sediment transport, and sediment deposition.

Funder

Natural Science Foundation of Zhejiang province, China

Open Fund of State Key Lab of Hydraulics and Mountain River Engineering, China

Open Fund of Key Laboratory of Flood & Drought Disaster Defense, the Ministry of Water Resources, China

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3