Rainfall prediction in coastal hilly areas based on VMD–RSA–DNC

Author:

Zhang Xianqi123,Yin Qiuwen1,Liu Fang1,Li Haiyang1,Chen Haiyang1

Affiliation:

1. a Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China

3. c Technology Research Center of Water Conservancy and Marine Traffic Engineering, Zhengzhou 450046, Henan Province, China

Abstract

Abstract Highly accurate rainfall prediction can provide a reliable scientific basis for human production and life. For the characteristics of occasional and sudden changes of rainfall in coastal hilly areas, this article chooses four cities in the eastern Zhejiang province as the object of the study and establishes a rainfall prediction model based on variational mode decomposition (VMD), reptile search algorithm (RSA), and differentiable neural computer (DNC). The VMD algorithm reduces the complexity of the sequence data; RSA is used to find the best-fit function; and DNC combines the advantages of the recurrent neural network and computational processing to improve the problem of memory forgetting of long short-term memory. To verify the prediction accuracy of the model, the prediction results are compared with the other three models, and the results show that the VMD–RSA–DNC model has the best prediction with the maximum and minimum relative errors of 9.62 and 0.17%, respectively, the average root-mean-square error of 5.43, the average mean absolute percentage error of 3.59%, and the average Nash–Sutcliffe efficiency of 0.95 for predicting four cities in the coastal hilly area. This study provides a new reference method for the construction of rainfall prediction models.

Funder

the Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3