Norfloxacin removal efficiency by a carbon filtration column under the influence of nanoplastics: mechanistic analysis and prediction model

Author:

Ji Hongliang1,Liu Zhenzhong1,Xie Xianchuan1,Jiang Wen2,Wan Siwen3,Wang Boyan3,Xiang Xiaofang1

Affiliation:

1. a Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, Jiangxi 330031, China

2. b PowerChina Jianxi Electric Power Engineering Co., LTD., No. 426 Jingdong Avenue, Qingshanhu District, Nanchang, Jiangxi 330096, China

3. c School of Infrastructure Engineering, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, Jiangxi 330031, China

Abstract

Abstract Activated carbon is often used in the drinking water advanced treatment process, which has good antibiotic removal capacity. However, the presence of nanoplastics (NPs) as carriers may increase the risk of antibiotic leakage in the carbon filtration column. We designed experiments with the polystyrene nanoplastics (PSNPs) concentration, norfloxacin (NOR) concentration, flow rate, and ionic strength as four orthogonal factors to investigate the effects of each factor on NOR removal by carbon filtration columns. The influence mechanism of PSNPs was inferred by combining with NOR transport curves and characterization analysis, and a prediction model of NOR removal efficiency was established through back-propagation (BP) network. The results showed that the increase of both PSNPs concentration and flow rate decreased the NOR removal efficiency. There was an optimal value of NOR concentration to maximize the NOR removal efficiency, while with increasing ionic strength, the NOR removal efficiency decreased, then increased, and finally decreased again in an inverted ‘N’ pattern. Furthermore, PSNPs can affect NOR removal efficiency via carrier function and aggregation on the activated carbon surface. On the other hand, the relative errors of the predicted and experimental values for two evaluated samples were 3.37 and 6.62%, respectively, indicating a good prediction effect.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3