Improving the remote sensing process of evapotranspiration in the SEBAL algorithm using meta-heuristic models

Author:

Komasi Mehdi1,Sharghi Soroush2

Affiliation:

1. a School of Civil Engineering, University of Ayatollah Ozma Boroujerdi, Boroujerd, Iran

2. b School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Abstract This paper investigated how the meta-heuristic models can be used to facilitate the estimation of evapotranspiration (ET) images. Focusing on estimating daily ET directly from received images of the electromagnetic bands of Landsat 8 satellite utilizing metaheuristic models, authors used daily ET images estimated by the SEBAL algorithm to calibrate and verify these models. The results of this research showed that the ANN model with DC and RMSE of 0.98 and 0.09025 mm/day, respectively, is more accurate compared to the ACO (with DC = 0.65 and RMSE = 1.45 mm/day) and PSO (with DC = 0.23 and RMSE = 1.60 mm/day) models in the verification stage in estimating daily ET images. The ACO model compared to the PSO model is more accurate in estimating ET images with DC of 0.65 and 0.23 in the verification step, respectively. While removing half of the training data, the accuracy of the PSO model surpasses the ACO model with DC of 0.85 and 0.80, respectively. Also, the ANN model is more accurate than the other two models in estimating ET, both when considering all the data and half of the training data (with DC = 0.98 and RMSE = 0.09 mm/day).

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3