Computational fluid dynamics analysis for smart control of water supply

Author:

Hariri Asli Kian1ORCID,Hariri Asli Kaveh2ORCID,Nazari Sajad3ORCID

Affiliation:

1. a Department of Electronic Engineering, University of Rome “Tor Vergata”, Rome, Italy

2. b Department of Mechanical Engineering, Islamic Azad University Rasht Branch, Rasht, Iran

3. c Department of Mechanical Engineering, Payame Noor University, Rasht, Iran

Abstract

Abstract This work investigated the partition walls or baffles’ effects on hydraulic parameters and water retention time in a reservoir. According to this aim, the water system was equipped with remote sensing (RS), networked sensors, advanced modems, and data loggers. The study showed how to control hydraulic parameters by the Internet of things and RS. The higher retention time led to the probability growth of rebar oxidation in concrete in the presence of chlorine and increased the possibility of water loss. This work also showed how to decrease the probability of water leakage in reservoirs. The computational fluid dynamics analysis results showed that the two baffles case led to the emergence of three eddy currents in the three zones created. The better fluid interpenetration caused the reduction in retention time. In the areas where the vortex was formed, the number of eddy currents decreased and the retention time increased. Regression analysis showed that the P value was 0.998 and 0.977 for the inlet flow and outlet flow for the reservoir, respectively (two baffles case perpendicular to the flow direction). The curve estimation showed that the power function had a suitable correlation on the scatter diagram and with the best curve fit.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference31 articles.

1. A versatile friction model for Newtonian liquids flowing under unsteady regimes in pipes

2. Investigation of the factors affecting pedestrian accidents in urban roundabouts;Asli;Computational Research Progress in Applied Science & Engineering (CRPASE),2022

3. Non-revenue water (NRW) and 3d hierarchical model for landslide;Asli;Larhyss Journal,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3