How different regional approaches to the network design result in key differences in burst event severity and failure vulnerability

Author:

Gibson John H.1ORCID,Karney Bryan2

Affiliation:

1. a Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, Canada M5S 1A3

2. b Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON, Canada M5S 1A4

Abstract

Abstract The pipe burst response of an innovative Dutch water distribution network is compared to a traditional looped North American network. Dutch networks focus on water quality and use smaller diameter pipes in branches. The branched network discharges much less water after a burst, which may reduce local flooding, traffic disruption, and product loss. In addition, high velocities and transient pressures are shown to be much localized in the branched Dutch network after a burst, reducing the risks associated with the intrusion of contaminants. However, despite improved water quality, less water loss, and more localized transients, the branched network cannot meet water demands downstream of the burst until the pipe is repaired, unlike a traditional looped network. For modern buildings that meet current design guidelines, the Dutch are content with much lower fire-flow requirements that provide the flexibility to improve water quality and reduce the consequences of pipe bursts, especially water loss.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3