Nitrogen removal capacity of simultaneously autotrophic and heterotrophic denitrification in a sewer receiving nitrified source-separated urine

Author:

Jiang Feng1,Liang Zhen-Sheng1,Peng Guo-Liang1,Qian Jin2,Chen Guang-Hao2

Affiliation:

1. Key Laboratory of Theoretical Chemistry of Environment, MOE; School of Chemistry and Environment, South China Normal University, Guangzhou, China

2. Department of Civil Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Abstract

Discharging source-separated and nitrified urine into sewer helps to save cost and space in biological nitrogen treatment as in-sewer denitrification is induced. This unique denitrification process may become complicated in sewers with sulfide contamination as simultaneously autotrophic and heterotrophic denitrification possibly occur but may compete each other for nitrate in oxidation of sulfide and organics. The objective of this study is to estimate the mixed denitrification rate in a sulfide-contaminated sewer when nitrified urine (mainly nitrite and nitrate) is discharged. In this study two investigations were conducted: (1) determination of the autotrophic, heterotrophic and mixed denitrification rates via lab batch tests and (2) determination of the total nitrogen removal rate in a 6.5-km long force main sewer via field study with calcium nitrate dosed at an average influent rate of 15.6 mg N/L. The lab tests determined the rates of autotrophic, heterotrophic and mixed denitrification at 0.36 ± 0.06, 6.54 ± 0.04 and 1.99 ± 0.1 mg N/L/h, respectively, while the field study estimated the total in-sewer denitrification rate at 2.32 mg N/L/h in the sewer when sulfide was present. Simultaneously autotrophic and heterotrophic denitrification was found when sewage was contaminated with sulfide. However, nitrogen removal rate of heterotrophic denitrification was 3.3 times higher that of the mixed denitrification process. The results indicate that discharging source-separated and nitrified urine into sewer is meaningful to decentralized sewage treatment, especially when sulfide is absent in the sewer.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3