Arsenic removal from groundwater by ion exchange and adsorption processes: comparison of two different materials

Author:

Chiavola Agostina1,D'Amato Emilio1,Gavasci Renato2,Sirini Piero3

Affiliation:

1. Dipartimento di Ingegneria Civile, Edile e Ambientale, Faculty of Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

2. Dipartimento di Ingegneria Civile, Faculty of Engineering, University of Rome Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy

3. Dipartimento di Ingegneria Civile e Ambientale, Faculty of Engineering, University of Florence, Via S. Marta 3, 50139 Florence, Italy

Abstract

Among the different technologies for reducing arsenic concentration in drinking water, adsorption has demonstrated in many cases to be superior in terms of performance and costs. However, there are numerous types of commercial adsorbents potentially capable of treating arsenic-contaminated groundwater. The present paper compares arsenic uptake efficiency of two different commercial media, one (FerriXTM) using mainly the adsorption process, and the other (IRA 400) working as an ion-exchange resin. Firstly, batch studies with artificially contaminated solutions were run to determine the isotherm equations and the theoretical uptake capacity. The following values of the equilibrium coefficients were determined: for IRA 400, using a two-site model K = 1.749; for FerriXTM, using the Freundlich isotherm model n50 = 3.02 mg L/g and k50 = 12.07 mg L/g, and n100 = 2.32 mg L/g and k100 = 6.75 mg L/g, for 50 mg L/g and 100 mg/L initial arsenic concentrations, respectively. Then, a series of experiments were carried out on column plants using real contaminated feeding solutions to determine the breakthrough curves. Both media showed very high duration of the cycle run. However, performance of IRA 400 was negatively affected by the presence of interfering ions, such as sulfates, which accelerated the achievement of the breakthrough condition. Instead, FerriXTM removed arsenic for a much higher number of bed volumes than IRA 400, but it was ineffective against the other contaminants of the solution.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3