How can drinking water treatments influence chlorine dioxide consumption and by-product formation in final disinfection?

Author:

Sorlini Sabrina1,Biasibetti Michela1,Gialdini Francesca1,Collivignarelli Maria Cristina2

Affiliation:

1. Department of Civil Engineering, Architecture, Land, Environment and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy

2. Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata, 1, 27100 Pavia, Italy

Abstract

In this study water samples of different origins (subalpine lake, artificial lake and river) were treated by pre-oxidation, coagulation/flocculation, adsorption on granular activated carbon and disinfection. Different laboratory-scale tests were carried out to evaluate the treatment impact on ClO2 consumption in disinfection and on the formation of disinfection by-products (trihalomethanes, adsorbable organic halogen, chlorite and chlorate). The results showed that coagulation/flocculation and activated carbon adsorption have the most significant impact on reducing disinfectant consumption. Pre-oxidation of artificial lake water with KMnO4 and NaClO determines the highest ClO2 consumption. Regardless of the water source, the amount of chlorite produced after disinfection with ClO2 is 40–60% lower using NaClO as the pre-oxidant rather than KMnO4 or ClO2. Otherwise, NaClO leads to a high formation of adsorbable organic halogens and trihalomethanes in artificial lake water (up to 60 μg/L and 20 μg/L respectively), while in the case of ClO2 oxidation, trihalomethane formation is 98% less compared to NaClO. Further, adding ferrous ion in coagulation/flocculation improves the removal of chlorite produced during pre-oxidation, with a 90% removal, mainly due to the reduction of chlorite to chloride. Finally, activated carbon adsorption after pre-oxidation and coagulation/flocculation removes adsorbable organic halogens and trihalomethanes respectively by 50–60% and 30–98%, and completes the chlorite and chlorate removal.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3