Affiliation:
1. Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616-3793, USA
Abstract
Aeration accounts for a large fraction of energy consumption at conventional water reclamation plants (WRPs). Older plants were designed when control techniques were relatively primitive and energy consumption was less of a concern. As a result, although process operations at older WRPs can satisfy effluent permit requirements, they can operate with excess aeration. In this study, we developed a wastewater process model to evaluate possible aeration savings at the Metropolitan Water Reclamation District of Greater Chicago Calumet WRP, one of the oldest plants in Chicago. Based on subsets of influent characteristics, we identified eight steady-state scenarios. We also identified transient scenarios that included high probability perturbations and more challenging but lower probability conditions. Results indicate that the Calumet WRP frequently operates with excess aeration. Effluent dissolved oxygen is the limiting parameter with respect to aeration saving and permit requirements. In a typical storm event, aeration could be reduced by up to 50%; even under low probability challenging perturbations, aeration can be decreased by 35% from current average levels and all permit requirements can be satisfied. Annual cost savings from cutting the aeration by 35% could be more than $1.2 million.
Subject
Water Science and Technology,Environmental Engineering
Reference25 articles.
1. CPS
2010
Cyber-Physical System Project ‘Managing Loosely Coupled Networked Control Systems with External Disturbances: Wastewater Processing’. National Science Foundation award number: 1035894. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1035894 (accessed 20 November 2016).
2. Applying fine bubble aeration to small aeration tanks;Duchene;Water Science & Technology,2001
3. Reduction of aeration costs by tuning a multi-set point on/off controller: a case study;Fernandez;Control Engineering Practice,2011
4. Nitrification and Denitrification in the Activated Sludge Process
5. Oxygen transfer in activated sludge – new insights and potentials for cost saving;Henkel;Water Science & Technology,2011
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献