Influence of substrate depth and particle size on phosphorus removal in a surface flow constructed wetland

Author:

Lijuan Cui1,Wei Li1,Jian Zhou1,Yan Zhang1,Manyin Zhang1,Yinru Lei1,Xiaoming Kang1,Xinsheng Zhao1,Xu Pan1

Affiliation:

1. Institute of Wetland Research, Chinese Academy of Forestry, Haidian District, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Haidian District, Beijing 100091, China; and Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101309, China E-mail: lkyclj@126.com

Abstract

Substrate adsorption is one of the main processes by which redundant phosphorus is removed from wastewater in surface flow constructed wetlands (SFCWs). The physical properties of the substrate, such as depth and particle size, will influence the amount of phosphorus adsorption. This study was carried out in a long-running intermittent inflow constructed wetland that covered a total area of 940.4 m2 in the Shunyi District of Beijing, China. We investigated how the concentrations of four phosphorus fractions, namely calcium phosphate (CaP), iron phosphate (FeP), adsorbed phosphorus (AdsP), and organic phosphorus (OP), varied between the surface (0–10 cm) and subsurface (10–20 cm) substrate and among the different substrate particle sizes. The total phosphorus concentrations in the substrate ranged from 154.97 to 194.69 mg/kg; CaP accounted for more than 80% of the total phosphorus content. The concentrations of OP were significantly higher in the surface layer than in the subsurface layer, but the concentrations of inorganic phosphorus were not significantly different between the two layers. The CaP, AdsP, and OP adsorption capacities were greater for small-sized substrate particles than for large-sized substrate particles. The results from this study provide a theoretical basis for the construction of constructed wetlands.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3