High-rate nitrification of electronic industry wastewater by using nitrifying granules

Author:

Hasebe Yoshiaki1,Meguro Hiroaki1,Kanai Yuuki1,Eguchi Masahiro1,Osaka Toshifumi2,Tsuneda Satoshi2

Affiliation:

1. Organo Corp. R&D Center, Nishioonuma 4-4-1, Minami-ku, Sagamihara 252-0332, Japan

2. Department of Life Science and Medical Bioscience, Waseda Univ., Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan

Abstract

Abstract Nitrifying granules have a high sedimentation property and an ability to maintain a large amount of nitrifying bacteria in a reaction tank. Our group has examined the formation process of nitrifying granules and achieved high-rate nitrification for an inorganic synthetic wastewater using these granules. In this research, a pilot-scale test plant with an 850-liter reaction tank was assembled in a semiconductor manufacturing factory in order to conduct a continuous water conduction test using real electronics industry wastewater. The aim was to observe the formation of nitrifying granules and determine the maximum ammonia removal rate. The average granule diameter formed during the experiment was 780 μm and the maximum ammonia removal rate was observed to be 1.5 kgN·m−3·day−1 at 20 °C, which is 2.5–5 times faster than traditional activated sludge methods. A fluorescence in situ hybridization analysis showed that β-proteobacterial ammonia oxidizing bacteria and the Nitrospira-like nitrite-oxidizing bacteria dominate the bacteria population in the granules, and their strong aggregation capacity might confer some benefits to the formation of these nitrifying granules.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3