Identification of potential sewer mining locations: a Monte-Carlo based approach

Author:

Tsoukalas I. K.1,Makropoulos C. K.1,Michas S. N.2

Affiliation:

1. Department of Water Resources and Environmental Engineering, National Technical University of Athens, Heroon Polytechneiou 5, Zographou GR-15780, Greece

2. Hydroexigiantiki Consultants Engineers, 3 Evias str, Marousi GR-15125, Greece

Abstract

Abstract Rapid urbanization affecting demand patterns, coupled with potential water shortages due to supply side impacts of climatic changes, has led to the emergence of new technologies for water and wastewater reuse. Sewer mining (SM) is a novel decentralized option that could potentially provide non-potable water for urban uses, including for example the irrigation of urban green spaces, providing a mid-scale solution to effective wastewater reuse. SM is based on extracting wastewater from local sewers and treatment at the point of demand and entails in some cases the return of treatment residuals back to the sewer system. Several challenges are currently in the way of such applications in Europe, including public perception, inadequate regulatory frameworks and engineering issues. In this paper we consider some of these engineering challenges, looking at the sewer network as a system where multiple physical, biological and chemical processes take place. We argue that prior to implementing SM, the dynamics of the sewer system should be investigated in order to identify optimum ways of deploying SM without endangering the reliability of the system. Specifically, both wastewater extraction and sludge return could result in altering the biochemical process of the network, thus unintentionally leading to degradation of the sewer infrastructure. We propose a novel Monte-Carlo based method that takes into account both spatial properties and water demand characteristics of a given area of SM deployment while simultaneously accounting for the variability of sewer network dynamics in order to identify potential locations for SM implementation. The outcomes of this study suggest that the method can provide rational results and useful guidelines for upscale SM technologies at a city level.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference17 articles.

1. Evaluation of treatment schemes appropriate for wastewater reuse in Greece;Int. J. Environ. Technol. Manage.,2006

2. Septicity in sewers: causes, consequences and containment;Water Sci. Technol.,1995

3. Sewer mining for golf course irrigation;J. Aust. Water Assoc.,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3