Application of image processing on struvite recovery from swine wastewater by using the fluidized bed

Author:

Ye Zhi-Long1,Deng Yujun1,Ye Xin1,Lou Yaoyin1,Chen Shaohua1

Affiliation:

1. Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian 361021, China

Abstract

Abstract Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH4PO4·6H2O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30–80 mm/s in the fluidized bed sustained 600–876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference22 articles.

1. Fluidized bed agglomeration of particles with different glass transition temperatures;Powder Technology,2015

2. Agglomeration of solid particles by liquid bridge flocculants: pragmatic modelling;Chemical Engineering Science,2015

3. Fluidised bed drying of powdered materials: effects of operating conditions;Powder Technology,2017

4. Monitoring and control of coating and granulation processes in fluidized beds – a review;Advanced Powder Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3