The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies

Author:

Aktas Doga1,Dizge Nadir1,Cengiz Yatmaz H.2,Caliskan Yasemin2,Ozay Yasin1,Caputcu Ayten3

Affiliation:

1. Department of Environmental Engineering, Mersin University, 33343 Yenisehir, Mersin, Turkey

2. Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey

3. Department of Geology Engineering, Mersin University, 33343 Yenisehir, Mersin, Turkey

Abstract

Abstract Adsorption and advanced oxidation processes are being extensively used for treatment of wastewater containing dye chemicals. In this study, the adsorption and Fenton behavior of iron rich Terra Rosa soil was investigated for the treatment of aqueous anthraquinone dye (Reactive Blue 19 (RB19)) solutions. The impact of pH, initial dye concentration, soil loading rate, contact time and temperature was systematically investigated for adsorption process. A maximum removal efficiency of dye (86.6%) was obtained at pH 2, soil loading of 10 g/L, initial dye concentration of 25 mg/L, and contact time of 120 min. Pseudo-first-order, pseudo-second-order, Elovich, and Weber–Morris kinetic models were applied to describe the adsorption mechanism and sorption kinetic followed a pseudo-second-order kinetic model. Moreover, Langmuir, Freundlich and Temkin isotherm models were used to investigate the isothermal mechanism and equilibrium data were well represented by the Langmuir equation. The maximum adsorption capacity of soil was found as 4.11 mg/g using Langmuir adsorption isotherm. The effect of soil loading and hydrogen peroxide (H2O2) dosage was solely tested for Fenton oxidation process. The highest removal efficiency of dye (89.4%) was obtained at pH 2, H2O2 dosage of 10 mM, soil loading of 5 g/L, initial dye concentration of 50 mg/L, and contact time of 60 min. Thermodynamic studies showed that when the adsorption dosage of dye was 25 mg/L at 293–313 K, adsorption enthalpy (ΔH) and entropy (ΔS) were negative and adsorption free energy (ΔG) was positive. This result indicated that the adsorption was exothermic. Morphological characteristics of the soil were evaluated by X-ray fluorescence (XRF), scanning electron microscopy (SEM), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy before and after the adsorption and oxidation process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3