Affiliation:
1. College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
2. College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
3. College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar 161006, China
Abstract
Taking cetyltrimethylammonium bromide (CTAB) as the template and using TiO2 as the substrate, coral-globular-like composite Ag/TiO2-SnO2 (CTAB) was successfully synthesized by the sol–gel combined with a temperature-programmed treatment method. X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, SEM combined with X-ray energy dispersive spectroscopy, and N2 adsorption–desorption tests were employed to characterize samples' crystalline phase, chemical composition, morphology and surface physicochemical properties. Results showed that composites not only had TiO2 anatase structure, but also had some generated SnTiO4, and the silver species was metallic Ag0. Ag/TiO2-SnO2 (CTAB) possessed a coral-globular-like structure with nanosheets in large quantities. The photocatalytic activity of Ag/TiO2-SnO2 (CTAB) had studied by degrading organic dyes under multi-modes, mainly using rhodamine B as the model molecule. Results showed that the coral-globular-like Ag/TiO2-SnO2 (CTAB) was higher photocatalytic activity than that of commercial TiO2, Ag/TiO2-SnO2, TiO2-SnO2 (CTAB), and TiO2-SnO2 under ultraviolet light irradiation. Moreover, Ag/TiO2-SnO2 (CTAB) composite can significantly affect the photocatalytic degradation under multi-modes including UV light, visible light, simulated solar light and microwave-assisted irradiation. Meanwhile, the photocatalytic activity of Ag/TiO2-SnO2 (CTAB) was maintained even after three cycles, indicating that the catalyst had good usability.
Subject
Water Science and Technology,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献