Micro-zooplankton grazing as a means of fecal bacteria removal in stormwater BMPs

Author:

Burtchett Jade M.1,Mallin Michael A.1,Cahoon Lawrence B.2

Affiliation:

1. Center for Marine Sciences, University of North Carolina Wilmington, Wilmington, NC 28409, USA

2. Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA

Abstract

A priority for environmental managers is control of stormwater runoff pollution, especially fecal microbial pollution. This research was designed to determine if fecal bacterial grazing by micro-zooplankton is a significant control on fecal bacteria in aquatic best management practices (BMPs); if grazing differs between a wet detention pond and a constructed wetland; and if environmental factors enhance grazing. Both 3-day grazing tests and 24-h dilution assays were used to determine grazing differences between the two types of BMP. Micro-zooplankton grazing was a stronger bacteria removal mechanism in stormwater wetlands rich in aquatic vegetation compared to a standard wet detention pond, although grazing was important in detention ponds as well. Our experiments indicated that the majority of grazers that fed on fecal bacteria were <20 μm in size. Grazing rates were positively correlated with fecal coliform abundance and increased water temperatures. Enumeration of grazers demonstrated that protozoans were significantly more abundant among wetland vegetation than in open water, and open wetland waters contained more flagellates and dinoflagellates than open wet detention pond waters. Grazing on fecal bacteria in BMPs is enhanced by aquatic vegetation, and grazing in aquatic BMPs in warmer climates should be greater than in cooler climates.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference54 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3