Affiliation:
1. Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
2. Beijing Ketaixingda High-Tech Co Ltd, Beijing 102488, China
3. Climatic Center of Xinjiang Uygur Autonomous Region of China, Urumqi, 830002, China
Abstract
Abstract
In order to find a model solution to simulate actual extracellular polymeric substances (EPS) solution in terms of filterability behavior, a series of experiments were conducted in a dead-end unstirred cell with 0.1 μm polyvinylidene fluoride membranes using binary/ternary mixtures consisting of sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA). Three target parameters (cumulative filtrate volume (CFV), specific cake resistance (αc) and rejection (R)) were compared and the roles of mixture components were investigated. The order of degree of influence on CFV, αc and R in ternary mixture was SA (94.5%, 85.6% and 88.2%, respectively) > BSA (5.2%, 10.3% and 8.0%) > HA (0.3%, 4.1% and 3.8%). Meanwhile, when the composition of ternary mixture was SA/BSA/HA = 285.1/150.1/10.2 mg·L−1, the deviation for CFV, αc and R was 7.65%, 19.6% and 7.27%, respectively, while the corresponding values for the most suitable binary solution (SA/BSA = 140.4/50.35 mg·L−1) were −12%, 1% and 164% respectively. This indicated that the ternary solution demonstrated a more accurate estimation than the binary solution for imitating the filterability of actual EPS solution. Therefore, the ternary mixture could be employed efficiently to replace the actual EPS solution in terms of three target parameters in practice applications.
Subject
Water Science and Technology,Environmental Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献