Oxygen aeration efficiency of gabion spillway by soft computing models

Author:

Srinivas Rathod1,Tiwari Nand Kumar1ORCID

Affiliation:

1. Department of Civil Engineering, NIT, Kurukshetra 136 119, India

Abstract

Abstract The current paper deals with the performance evaluation of the application of three soft computing algorithms such as adaptive neuro-fuzzy inference system (ANFIS), backpropagation neural network (BPNN), and deep neural network (DNN) in predicting oxygen aeration efficiency (OAE20) of the gabion spillways. Besides, classical equations, namely multivariate linear and nonlinear regressions (MVLR and MVNLR), including previous studies, were also employed in predicting OAE20 of the gabion spillways. The analysis of results showed that the DNN demonstrated relatively lower error values (root mean square error, RMSE = 0.03465; mean square error, MSE = 0.00121; mean absolute error, MAE = 0.02721) and the highest value of correlation coefficient, CC = 0.9757, performed the best in predicting OAE20 of the gabion spillways; however, other applied models, such as ANFIS, BPNN, MVLR, and MVNLR, were giving comparable results evaluated to statistical appraisal metrics of the relative significance of input parameters based on sensitivity investigation, the porosity (n) of gabion materials was observed to be the most critical parameter, and gabion height (P) had the least impact over OAE20 of the spillways.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference33 articles.

1. Energy dissipation and discharge coefficient over stepped gabion and buttress gabion spillway;Aal;Technology,2019

2. A novel boosting ensemble committee-based model for local scour depth around non-uniformly spaced pile groups;Ahmadianfar;Engineering with Computers,2021

3. Aeration performance of weirs;Baylar;Water SA,2000

4. An Experimental Study of Air Entrainment and Oxygen Transfer at a Water Jet from a Nozzle with Air Holes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3